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Objective:Develop a computationally efficient tirmesk optimal motion planner for variabipeed autonomous vehicles
In obstaclerich environments.

Existing Approaches
for Time-Risk Optimal Motion Planning Samplebased Methods for Rapid Motion Planning
C The algorithm[1] is the only motion plannerthat considers C RRT* and PRM* [2] quickly generate asymptotieaftimal
multi-speed vehicles and jointly optimizes time and risk. shortest paths as number of samples increase

C Limitation: Gridbased approach is computationally expensive C Limitation: Restricted to singkspeed vehicles & no risk considere

)|

Kinodynamic Motion Models Featuresand Contributions of  -Lite

C Dubins [3] provides shortest paths for single velocity vehicles | C Enables fast timeisk optimal motion planning for variab&peed
C Limitation: Does not consider muiBpeed vehicles vehicles by:

C Wolek [4] provides tim@ptimal paths for multispeed vehicles C Porting the novel timaisk cost function fronT into a fast
C Limitation: Requires nonlinear solvers ‘ and asymptoticallyoptimal samplebased motion planner

C The recently develope@eneralized Multispeed Dubins C Generating samplegsom afour-dimensional configuration

Motion Model (GMDM)[5] overcomes the above limitations: space considering position, heading, and speed.

G Better maneuvering by controlling the turning radius ¢ Utilizing the GMDM to produce the optimal tirresk
C Speed selected based on obstacle distance to mitigate risk trajectories connectingampled states
C Allows for reaitime computation C Algorithm is computationally efficient while providing reasonab

solution quality
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(a) Overview of the computation of the time and (b) Example of the higimensional sampled vehicle states
risk costs in the joint optimization problem. and the timerisk optimal trajectory produced by the

Generalized Multspeed Dubins Motion Model.
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Autonomous Venhicle Description

c (,.,) (2) is the vehicle and position heading

C Taking speed( ) and turning rate ( ) be the inputs,
the equations of motion are:
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Variable Speed Curvature
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Note: curvature is the inverse of turning radiug: ) = O
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AdmissibleControl: Let " denote the set of collisionfree paths between the start state and goal state
. Foreachpath [, thecontrol ( )= ( , )atanypoint onpath ,belonggo:
Q={(, ) ms = |l

Costof aPath Let ( ) denotetheriskcostat point onpath . Thenthe total costiswritten as

- Oty

risk cost t|me cost

Objective Find the optimal control Q, which generatesthe collisionfree path , suchthat: ( )<
(), [" in acomputationallyefficientmanner
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Approximate Piecewise Path Cost Functi&ssume a constant risk %
along path 4. Thus: N .
( ) — ( ) 1 A Low Speed Statet High Speed State
*1) , +1 () An example of the interpolated state sequence
/ A composed of states =( , , , )
risk cost time cost
I - I . dl::
Risk Cost ( , ): For each evenly interpolated statgalong ., 1: ', obetacle
1. Computecollisiontime , = — ‘
¢ 7 -
2. Given safety threshold , compute sample risk: I s ﬁiﬁ‘"
[ JJJ "’I ," J dS
_1+lo g(—) I £ < H DA i
(= 0 NpsPaBs T q,
1 ¢ 2 P2 };/;ﬁ*-i’s -------
. . . . . D i+1
Finally, the piecewise risk is computed as: '?r/ :
(+0)=, maxC ()
¢ {1,.., } p;n

C > 0 is the userdefinedrisk weight
T Min-speed State | Max-speed State

Sample states; along collisioHree path ., and
corresponding collision distanceg
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TheGeneralized Multispeed Dubins Motion Model (GMDMS$ a fundamental improvement of the Dubins model that enabl
the selection of any speed for any of the three segments of a Dubins patheft turn, = straight, or = right turn).
C Used to generata set of candidate trajectorigbat connect any two states to

Main Features:

C Provides path planners the Goal+—, ¥ Goal
flexibility to select the nloow |
appropriate speed dynamically \]f
based on the perceived risk bt

C Selection of both turning rate
and speed enables selection of
appropriate turning radius to e[| p
smoothly maneuver around
obstacles based on their

shapes and sizes o 3 5
C Synthesis isimilar toDubins, ! /S”“ Start Ly ol !
T . tart oa Goa
thus prOVI(_jmg Slmple plosed LSL Path Type LSR Path Type RSL Path Type RSR Path Type RLR Path Type
form solutions for reatime

computation. Visualization of the Generalized Mu$peed Dubins Motion model for each of the six path types.
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Start —» Goal
LRL Path Type

8/31/2020 T*-Lite for Fast TimeRisk Optimal Motion Planning



¥ -Lite Algorithm <§)L|NKS

UCONN RRT* Motion Planner

and Knowledge-Perception Systems

T -Lite utilizes the asymptoticalgptimal samplebased RRT* framework, which has six core functions:

C Nearest neighbor C Sampling
C Nearbyvertices ~ no changesfrom RRT* C Distance - updated in  -Lite
C Collision check C Local steering
_________ neighborhood
Neighbor with """ §
Summary of RRT* 7 e nearest the ?east costto
: ' he start node /. ®- nearest
C Sampled states are randomly generated in [ the start node / §

sample

® : | ': ‘_
the obstaclefree space | L ‘samp'es - \.,

C A search tree of minimuroost collision . _ .
free paths that connect states to the start o
node is created

C As new states are added, connections
between existing states are updated if
connections to the new states are faster.

obstacle

Figure:lllustration of RRT* and the iterative seartriee update for a point vehicle.
Note: connections between nodesTn-Lite are subject to curvature constraints.
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T -Lite is based on the asymptoticabptimal samplebased RRT* framework, which has six core functions:

—_

C Nearest neighbor C Sampling

C Nearbyvertices  no changesfrom RRT* C Distance - updated in  -Lite

C Collision check C Local steering
Sampling Functiorgenerates randomly sampled collisinee states states = ( , , , ) In the obstacldree
space
Distance FunctionLet : x - 2 be a function that returns the cost of the timesk optimal trajectory 1

between twostates , .y  suchthat ( , 41)= ( 44).

Local Steering FunctioGiven two states , 44 , the steerfunction produces the optimal collisieinee trajectory
41 Connecting to . such that( edr, +1)) = ( , +1).Producingthe optimal trajectory requires:

C Theapproximate optimization function from  to evaluate the timerisk costs of the created candidate trajectories

C Akinodynamic motion modeto create a sufficient set of candidate trajectories connecting two states
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30
Autonomous Vehicle and -Lite Parameters:

C (mi nmax=1(0510) / 25
C max 05 /

C Safetythreshold = 6 20
C Riskweight = 2 )
C Num. of interpolated states = 4 ‘é 15
C Searchtree max size: 3000 sampled states >
C Num. of nearest neighbors: 100 10
C Max. connection distancé:

C ScenarioSiz& x3 0 5
Motion models used in -Lite: 0
C Max-speed Dubins motion model ° ° 10 X[mfters] 20 2 %0

C Generalized Multspeed Dubins Motion model Figure Scenario used in simulation
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52 Min 1.0
ad
6 12 18 24 30 6 12 18 24 30
Travel Time44.56 sMax Risk2.13 Travel Time39.23 sviax Risk 1.69
TimeRisk Total:60.47CPU Timet.34 s Time-Risk Total45.78CPU Time3.65 s
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Conclusions
¢ Developedr -Lite for rapid timerisk optimal motion planning for variabipeed autonomous vehicles.
Achieved by:

C Porting the novel timeisk cost function fronT into the RRT* framework
C Generating highdimensional samples that considers vehicle position, heading, and speed.

C Utilizing the Generalized Mulspeed Dubins Motion model to provide neaptimal trajectories in a
computationally efficient manner

C Provides fast, safe, and flexible maneuvers in obstackeenvironments
C Suitable for ordemand reakime motion planning

Future Work
In-depth analysis of th@& -Lite framework in other asymptotically optimal samjblasedirameworks.
Direct comparisons against the giidsedT in terms of both solution quality and CPU time.

Develop smart higldimensional sampling methods for mudipeed vehicles to further enhance solution
guality and reduce computation time.

Extend to multiagent resiliensystems.

O OO0
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